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All instances of the it:" (integral sign) .should be replaced with !4 "-'1$.8 1 (later case Greek delta)-througlaUt, the entire paper.
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USING STEIN'S ESTIMATOR TO. PREDICT UNIVERSE SCORES
FROM OBTAMHE6 SCORES

OW

The purpose of this paper is to introduce and apply a recently .

developed statistical- method _r estimating true ( population) scores
from observed (sample) cores. Provided thr.t least three scores
are availablA, this method overall will give more accurate true score
estimates than the.inifividualimaximam-lielihooa:estimates (MLE) , '

regardless of the trUe abiliiiee of the examinees Efron & Morris,
1977). The methOd can bee used without knowledge of the (Bayesian)' ?'
prior distribution, 'end normality of the true scores being estimated

. need not be assumed. The'theOretical and practical-implications of
the method extend beyond psychological measureient'to the very founda-
tions of statistical inference,and have.caused some tumult in thatdis-
cipline during the past decade. .

.

Mk/

HISTORICAL OVERVIEW

For the Gaussian distribution, theaverage is the'best estimator
of the true mean, G. The average is said to be "unbiased" bebauseo
single value of is favore4 over any other value:' That'il, the ex-
pected valie of'the average, x, equals the true valhe of 9, regardless
of the:value of 9. How many unbiased estimates of 9 are there? An
infinite number. But, none of them estimates 0 peridctly. 'The expedted
squared error ol'estimation fOr the average is loweg than that for, any "

other linear or nonlinear and unbiased function of the data. ,

.

A departure from this classical approach assumes that unbiased esti-'
mates of 9 are not the only methods by which to lnXer population values.
For example, other'possible estimates'oi 410 could be the= median, i/2, 2x,

. the mode, etc. All such estimators, can be compared through a risk func-
tion; rhich is the expected Value of the squared erroI for every possible

.yalue of O. Plots of risk functions show that there is no estimator
with.a risk functimi that is everywhere lower than the risk function of
the average, 11, provided that a single mean is being estimated. BUt in
the more general case, a score is available from each of many examinees
who have taken a test', for example, and it is the true score of each ,

examinee that is to be'inferred. Thus, the MLE is merely a specific*
.vase'of,the more general situation where the mean scores. (e's) are

,%soUght for each examinee. ,
.

Ttlioretical work conducted by stein (1955) andby James and Stein
(1961) concentrated on estimating several unknown means, phroughmethods
other than maximum likelihoodustimation The authors assumed tOetthe
means 'are independent of each other and"that the goodness of vatious
estimators can be assessed by a risk function:* the sunva- the expected .

,Values of the squared-errors bf estimatipn for all of the individual'

5
0 .
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means. Also, it is not necessary to assume that the means being-es,ti-

. mated come from normal distributions. Whgt James and Stein proved is
that wlen,three or more means (0 values) ,are being estimated, it is 'I

`..less than optimal solution ( "inadmissibre") to estimate each 9 from its
' own average. That is, estimation 'rules can be found with smaller Iota'

. risk regardless .of the values of the true means (0's) for -each examinee.
As Eft-on andMortis (1975) express this accomplishmeft: -1

.. a . . .--.
Charles Stein shovied that ,..l.t is possible to make a uniforin '
improvement on t&e maximum, like] estimate (MLR) in' .
terms of total squared error risk whentesamating several

. parameters. . . . This achieVement leads immediately ,t2 a. uniform, nontrivial baprovement4over the least squares'. (Gauss-markov) estimators for the parameters in the usual ,
formulation of the

o
linear model (p. 311) ., - 1.
. i

THE STEIN ESTIMATOR

The following %dismission -serves as an inirodujtion to the Stein---
; estimator. Assume that we have k parameters 01, 0 :...0k' 'k > 3' and

.
that for each 9. we °knee, an independent normal variate x, with mean,,

I 1
E .3C zL.. 0 4 and variance Vax (x ) = 1. Note that! each. x 'itight, be the-0i i i . 0i i

2 ,I ... imeal: of n independent Observatidns Y .4,n(9., a ) . Then x-.4,nI0.1, 02/04
2i3 :. 1

and a change of scale transforms a in to the more onvenient value of
3.; Therefore, the above assumptions often occur -s a reduction from
more complicated 'situ-ations to this canonical. fo

. - . . ,

f

.., The primary objective for applying the set o e timation rules is
. _

tb-e4timate the unknown vector of means To , To 3 (9 92, 90 . The
*

9$' : .4"-pe'it'4$5.1i nae of an estimation rule is assessed by- omputing the $14,1% of.

',..scpii*ed componellt.errors that is the sq4ared err r lois for that esti-
.

'Mat I; If 7 (I I I is an' est, .rule. . . ) tionrule, where Iil' 2"., a a k 1 2.4. 4. *is:. e estimate of 0 ,,then the squared error lo s 1,(0, 1) is definedik ,
- as (34,-1) E E (Ii - 9 , ) 2. . .-,

ec .. 1 J- . J- -' et *

, i i . .' ' .

d . . 4 . . . A . 1 . ;

. In the case vf the maximum -likelihood est tor,, or the sample

^,
.
-

.
iii.

i

. .

',..

,
al

.4)

.

0

0::
..
.,- , .

. ,,;
4

.0
.1% 4,

'ilk
0 6.

)
.

4.. ,
.

,

,

.

.
,

e.

v
. V

1

01; ,;
, ., .,,
.4.

.- ,,,., ,
. 7 -.

,
" O..

Is
% % Z

i

4

,tel 4,
,y r (X),

.,
, ..

: .
.

?X) E , CI)

.

I:(1) )
t

-

AE I! .

41'4% I ti

a.

"ft



.
. : *.

a I .
i-

.

4. '1 kt.
, -

4. 4. -tthere is a... constant risk, R, with R(0,..1 '(X)) = li(-4, JX).= E, E. a i a 1
(x. - 0 ) a k. (Note that B indicites the expectation over the dim -. .i i .

.0.
1 ind "

-tribution xi 1 9i ti d N (0 1) introduced 'above. Observe . that E (X - 9.) 2
$ .e- i' .. 9 i i.

= 1-efor eaCh i, i a 1,....k..) .

-)

The Stein' estimator may be used ttestiaiate 9. Dennis the Stein
1 (I') gt ()a 61) (ic

estimator,
1

X E , ), k as follOws:

.11.01 3 i.o.4.k -,ALL21)(v
1/ S 4 {ti),1 +

4.

I
. i4

where p F. (pi, ...1.111) represents an initial, guess at the tue mean, 9, -.

2 'and S is defined by S 3 E(x. - N.3 ) . This estimator thusahas risk ;i 3 . ,. A , . ,
.--.1

+4 11 + k
... 1 2

r

(k - 212 k' R(9, J (X) ) = Le E Ili (x).-- ey 1 lc,- k ..- . Z .-a =.1 k - 2 4. E r Op - U4), i = 1 3.

for ,all I. If 0.
1

a pi for all. i, the; risk is. 2, which &spares- quite . 40-

$

1 favorably to/. k 4:Attained for-The sample .m ean, In any event;-, the.,riak 0.
0 for the _Stein .estiniattor is less than that for the maximum likelihobd.P*

estimator. A discussion of how the raft for the Stein estimator. was.

. '

obtained, is presented in the last section df. this paper. _42.1 ,

A .

The Stein estimator has a very natural interpretation in an :empiri-.. "
. of

cal Bayes context. If the'9. themselves are a sample fromoa tproritdl.9,-. 3. . .

tribution, 0 N(11.. T2) , i a 1...k, then the Bayes estItaate-of ,-§* - 'ind A.
,

i 4, 3: p : . ... i,. *
is the a posteriori mean of 9i given the data, and di, is defiled, by

1 .
.4 . t* I 4

*' 1i(xi) = E9i xi a pi + (1 -2-) (xi ui) .
'4P T

In the empixical Bayes situation, T is ainknown., butit"'Cati be
. . ,' e'.

estimated because marginally thex are indepeildtntly hormai vial means
k i 1

I * 2 2, 2 2 ""'- 4_ _IL and S a Z (x - 11 ) (1 + "T / X.whe,e Xk is EC,Iiii=square distrib--. . -13. j = 1 J. J . -t .% -. - . ..c.Ution with k degrees of freedom. Given that k 3, 'the.unbia"sed' estimate

.1 1.4

(k - 2) . '1
E is

"'0 !sk i
:*14S

4 t
4

I. J 1- . -

. f .

1. '4 I. *;; ;:-. . '...; ."..'i
,) 4 ':.:. .*,

'44 4* 411'1p., 4
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- 2 1
.' 'Substituting -;.-ubitituting -for theunknown 1.--i=2T in the Bayes estimate
* °

. 1 Ii results in
)i

k 2

i S
+ 1 - (x

i
- p

i
), which is the Stein estimator.

: 4 .
Predicting Batting_Averages Using the Stein Estimator

I

The following example adapted from Efron and Morris (1975,
1977). hatting_averages for mayor league baseball players,, based upon
theirfirst 45 times at bat, were obtained. The objective was to pre-
dict dad' player'S batting average for the remainder of the season. A
cutoff after the first 45 times at bat was chosen because that number
was large enough to insure a satisfactory approximation to the binomial
distribution by the noima1 distributiOn and because the vast majority
of "at bats" for the season would beestimatdd: The model assumes that
hits occur according to a hihomial distributidh with independence be-
twee players. (Requiring the same number of trials for all playerf,
n m 1%, assures equal variances; however, the Stein estimator can'also
be used when variances are unequal.; See Efron and Morris, 19754

Let--Y.bethe batting average of player i,,i = (k = 12)
ind

after the first:45 times at-bat. Assume that nY Bin(n, PI). ,

i m whete*.Pi is thetrue season batting average, i.e.,

EY
i
= p

I

BecausethemvarianceaS.depends upon the mean, the arc-gin

transformation for stabilizing the variance of a binomial distribution

is applied: 'xi ='f
45

(Y
i
), where f

n
(y) = nilarc-sin(2y -

.OF

1) ". It can

be shown that this transformation results in x
i
having pearly unit

._ .

.variance independent of p .
i

The mean 0 of x
i
is given by 0

i
= f

n
(p
i
). Values of Y

i'
p
i'

x
i'

S. 0
i' i

f'
.

and p
i
are lisped for players 1.ihrough12'in Table 1. Batting.

.,
.

averages for the first 45-timeS at bat are listed in columk 1. Each
. %

.player received from 270 to-590 additional "trials".during the season.et ..
The batting averages for'this se4sonal trial number are listed-in

column 2. Recall that the-objective here is to predict each player's)

column 2 ( "true," "population") v lue using the-initially obtaibed

column 1 ("sample") value. -

A

4

8
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Table3! !
. .

Example Using Batting.AveraOs From 12 Players
-.4

(li (?) (3) . (4) (6)

P.
3.

.0

- 6
x. 0,

3. pi

. .

.400 .346 -1.35 -2.10 -2.49 .319'

.

.378 .296 -1.66 -2.79 . -2.60 .'..311

.

.356- .276 -1.97 -3.11 'L-2.7I .303

.333 .222 -2.28
1

-3.96 -2.82 .296

- .311 .270 -2.60
... ,

.

-3.20 -2.93,) :287

289
-..
.263 -2.92 -3.32 -3.03 .483

- .

.244- .269 -4.60 -3.23 -3.26 .265
, .

.

.222 .303
..r...-

-::-
-3.95 -2.71 -3.40 .258

222 -->464 -3.95 . . -3.30 ' '-,.3.40 .258

. ,

.222 .226 -3.95- -3.89 -3:40 ' .7.513-

...

.200 485 .--I4 :14 2.98 -3.53 .249
.

. .

$178 , .316 -4.70

. '- . .

Note. 'Listing of the HIE Scores and Estimated Universe Scores (columns
Vend 2), Score Transformations (columns 3, 4, and 5), And the
Estimated Universe Score from using estimator (coluMn 6).

np xi values obtained upon application of, the arc -sin transforms-
,

tion to the column l.battiwg.averages (obseryeescOres) are shown in

co lumn 3. Similarly, the Si values obtained by applying the arc-sin .

'transformation to the column 2,.bitting averSgesare shown ift column 4.
. . e

The'Stain estimatovyalues thatestimate the 0
i
are shown in'column 5,

, .

5

9
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"

and the values obtained upon retransfordationrvla the arc-sin t14-

formation are given.in column 6. The following calculations are exam-
_

pies of the.type of.computations required...Note that the'cbmputatio

are not at all complex.
l

,

For i = 2, f
n
(Y
2
) = 45

Is

arc-sin(2(.978) - 1)-= :-1,66. Therefore,

x2 = -1.66, aid is entered in column 3. Similarly, '912 = fn(p.2) =

45harc-sin (2(.298) - 1). This value is given-in column 4.,_Values

for ri, x3,...x12and:91, .93'912 are obtained through similar

substitutions

t.

0%. A

'

The basic equation for the Stein estimator .1

;.1
which allows us to

estimate the4h component of 9, is slightly different from the expres-,

sion introduced previously. We estimate the initial guess p pi/k

by 7= Exiik, which shrinkg all xi toward-Y.. The resulting estimate

ofthe ith companent 9 of 9 is"given by
. A

(1) = (1 - (xi where V =.2(x 74 2, and k - 3 =v

(k - 2; because one parameter is estimated...

In the empirical Bayes case, the appropriateness of-this formula-
._

leg k =3
tion follows if Y is used as the unbiased

. V
estimate for p and 'as

1*
'the unbiased-estimate for I-.7-77. Therefore, in the case of the'exam7

=ple data provided in Table 1,

= Ex = (-135) +12 +' (-4.70) = -3.10.

The value for leaky iriturn'be used to compute V:

V4= 2(x. 1)2 = (-135 - (3.10),)2 +...+ (-4,70 - (-4.10))2 =

,

. .

0./

6

1:0

O

4



.
A

0 .

ii

.

e.. vi. ',7,
.

-* ,
. ..4.

.

. .

The Stein eitimatbs for 03....01.2arederived.by substitruting the-
-

.
.

' obtained vanes for Z and V'in-the coipdtationS1 equationi.

I

Ei.

(X) =.-3.10 4. 1.- - - (-3.10r) =,..350k.-4 2.02;
13.81 i .

. .

4. - .

7

For xample, f% .; .350( - 2 502 J. -2A'9. 'This value and
-L -f

the Varies for f ..r are listed in column 5 of Table 2.. These Values'
- -

' are finally retrani;ordtd,to Obtain the esiirliies of the "true score"
, , , -- , .

avdrage for eacPlayer in column 6. ?
. .

The.totil

(I
1
- 0

1
)

-

tubtractingthe

' the 12 players,

.
4

squared prediction error for I (X) is'ddfined as
2

(1i 1412).
47.040. This valde is obtained by

. «
column 4 value from the column 5 value for each of

- -'"
squaring the differences, an'4 sumMing.

- _...
. .. ,/4 '

In the case of the sample mean, X; the total squareediction

error is defined as E(x
i

- 0 )
2 *

15.135. Thisyalue'is obtained by.
. . -i .

. ,

, subtracting the column 4 'value from the column 3 value for each of the

- , '12 players, squaring the differendes, ana summing.

The adequacy of Stein's estimator relittiye to the sample mean may

be determined by computtng their relative efficiency. -The efficiency

of Stein's estimator relative to the'sainple mean is defined as

E(xi 0.t
2

i

E(fi(X) - 0
i
)
2

.

..1

4,1110

In.this example, -the efficiency is 3.746. In other words, Stein's est
.

orator is nearly four times as "efficient" it...predicting "universe" or I- 4
. , .

"true" scores from observed (sample) scores ts is thea"MLE.
.

. . . ` 410
4

o

oo. e'

'7

.
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Liiited Translation Estimators

.

Stein estimators. achieve uniformly lower aggregate risk than' the
MLE (samplq mean) as shown abOve, but may relult in. increased risk to
individual components of .8. In partioplar,the Stein eseimator.lkay_ to-
poorly in estimating 8, with very large or Very small values. Therefore,

-
, even/though.,A. (X) provides better: prediction in the aggregate, be mar'-;

grpasly err with inditvidu.a components:. ,idestrable compromise -would
be to have bOthgood aggregate and good individual prediction, where
improved individual prediction would .occur with minimal, if eny,, loss
in aggregate prediction'effi,ci4ncy. This tradeoff may Ipe achieved by
using "limited translation estilItittorsnth at" reduce individual 'risk for
outlying cases and result in minimal loss in aggregate prediction.

, Ir 0.

- Limited translation estimators are introduced to reductr potentially
laige' mean squared prediction errors associated with individual. compo-
nents. Shrinkage of It values toward xi values is accomplished through
the estimate 7, 0 < s < 1, of O.% -(Here, 7° = x. and 71 = 71 ). ,7s is'. . i - 1. i ' i i71. 1defined to be as close to .II. a sisible, so long as it does not differ
by more 'than.[.(k - 1)

k
- 3)

flk 1(841, standard deviations of xi(k1/2
. from xi: Dk _1{s) is a cOnstan , obtained from a table of limited

.
. translation estimators (Efron a Morris, 1972).

. . "
. . .

, .
Data from the baseball example will now be used to illustrate;tite

application of limited translation estimators. Notice in Table 1 that
the first playetpseason average farexceeds the season averages Of <. '

the remaining' players, an example of an a tlying *ass. in the basOball
' example, k = 12, and V was found to be I 14. Therefore-lzy obtaining'

_ .
value4 for- D 1(..9) and Dk 1(.8) f Efron and-Morria=44872) table, ..

.. it isgound that'79(TC) may differ by nol'atre than 475 from xi and -
.-i

7:8(1i) may differ by no more . from Xi..." in Other words, by apply-,
", 9 ' '1 71 ,"- 1pig 1 it means. that -if pi- Xil..75, then f is retained; but if

Ili xi. I > .75, f....9 'is set equal to the value 'differing from xi by .7.5.

.-
f. t.)! t..-

_ . - . 1
. , 4,

. ).. -
. . . . .

. 8

12., I

4
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' , -..,Table 2 containa.vaiues_ fOr.die.-12 players Zr pig,.
and .Value'.Valtiee for, p- and p are obtained as .followl: Consider -,'''-'

r.9 .8 ...

ti .. -.1 - . . .
,.

. the first player, x = -1.354 and I, = -2.48: therefore Is - /1.1 =.1,:.4. = - f
t: i It .I. i

."..9 ftl, i
.' 1.14 > .13;Tharo---.10,* aid' Ixi --fil = 1,14:> .56., Thus., .x.- .

.9' r
'' 7.13,i -1.93... Thesevaluesi;e Atrarislated to obtain g ix .346, and

. i i - . ....1 ,
. 9.4 , 4 ': 360: Notice. that' r = : 346 . Therefore, Ai provides' betier'

i.
i i-

^1, : ... .8
.- '*: '.:predictiOb foK this. indiVideal t;han pi or h,.Also ndte.that iii is:. ... "1, `, closer to tie .P.*valnethari ID ..- All three predici&ion estimattts, are'

- . : i " i .. ,. ..
'

-.1 . closer than the MIAR.value of Y = .4730: -In the case of the. second..
.- _ . . i'.,' -../7-\. .,..s .. ...._-

:,, r .. < player, thottgh,, the pi 'value beOpte faither removedifrom .
t <

.,

late' ,of s decreases froni.. to .9' to, .8: Therefore, the translations, .
_, .: .1

.......,
. :are increasing the squared Precliction"error-for.pat player rather- .

.. .- .
than decreasing it. 1n the case of the fifth, indivIdtial, Ill - xi l k .75

, . ' and ifi --xi1 < .56, so the e 'estimated
r

value remains the same understraas:.
lationa s = .9 and s = .8. The estimated vilue will not changk.until! ,.

, . t
rii" - x 1 <- .33. Ih tag particular example, the tranilaiion is in-i i a. i

$. .

7. creasing thk error for many individual. components by increasing the dif-,.

ference, between the estimate and the true score.-.
.e

" l
' *

"*.
. .

Recall'
.

that the efficiency' of of Stein's ,estimator, J (X) , relative
. . :

s' to the settle mean was defined to be _g ...
.

.. E(c. gi)2
,, .-V. - 3:746. g/ .. ',

f

iE(f- - gi)
2.

....
. -

. .

The efficiency of the litilted translation estimator...C.94Z relative to

-

the1wample mean is defined tot$be

E(si - i )
2

,
.

47.
9 2 .'- -J.

.
.

,...8 4
which tquals 3.077. .Sima J

"8(X)For (X) the relative
f A . 1

-7.equals .2:462; Therefore, ,'in. this,- eXample t1: (R). has the
t l' 4.9 P8ciency of the.tti ee estimaors, f , ,;,a n a . ....., ...--:

,orN

-

efficiency
greatest iffi-

.
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Table 2. :4
.

. ., .,

Batting 'Averages 'and They P.stiiates s *,

it (xi)
ti

P ( s..8;2 (ft ) I x - 11

.. .
.' . ...,

. -.,

-..346 .400 (-1.35r ' .3191-2.49). .4346 A-2-.1. ) .360.( -1.91) 1:).4

.298_ .378 (*66)* .311 (-2.60) .324'(-2.4 ) '438 (-2.22) .94 . ,-

f .

.276 .356 (-.97) ', .303 (-2.71) .303 (-2. I) ' .316 (-2.53) .74

.222 .333 (1.29) .296 1-.2.82) .296 (-;. 2) .2961-2.82) -.54 '

.288 (L2.93) .33

.282 (-3.0) .11 %

.265,40-A..24 32

.270 .311 (f2.60) '.288 (I-2.93) .288.(-2. 3)
(...

.4263.- .289 (.-2.92) .282 (-.1.03) .282 1-.3.0)

4.. . . .
169 .244 (-3.601: -265 (-3.24 .:265 (-3.20)

.303 .222 (-3.95) .258 (-3.40) ..25S (-3.40) .258 (-3.40) .55-

.
.264 .222'(73.95) .258 (-3.40) .258 (73.40) .258 (73.40) .55

, .

4.226 .222 ( -3.95k .. .158 (-3.40) j58 (-3:6)
.. . i

.28511. ;200 (-4.32) .249.(4-3.53Y .246 (73.57)
.., .

.258 (-3.4.0) .55

.234 (:-3.76) .79 4'

t.316 .178 (-4:70) ,241, (-3,66) . t.222 (-3.95) )..2101-4.14) 1.04

a

b

{(k 1) (k -
kV

[(, - 1)(k- 3111
kV

.'Dk-l(*9) '74

= .56.

.

Relationship Betteen Aggregate and Individual Component Mean
Squared Prediction Errors.:

Prior information abut pertaiM'eiaminese can edto produce
modified estimate's of their true 'or universe' scores,: = this sense,
ttie estimator funct4ons as an empirical. Bayebian p edi n models.; This
procedure is umfst effectively Used when the eicaminee.hes ghly credible
information :twit specific-iximisiees., which is tsntamountiko having a
high 13rior.ProbbbilitY, in the usual Bayesian sense., As uit, -for

4

4 .I

4

I 1.14
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. ,. - :40"

.;

these Particular examinees, the fit cif test scores.to !'true", scares may.
, be improved, considerably by use of a limited transiatiowiestipiator.

However, even though the limited tradslationbestimitor iia7;d4a.lower
aggregatesquared prediction error for the set of.examinees as a whole . .
than does the MLE' Isample mean)".it may reduce ;the overail.efficiendy
from thatof /1(1)-by increasing the mean squared prediction errors fdr
other examinees in the population. Therefore, oveial effaciency, in-
divfdual

P
squared prediction error; andrprioriatornation'availabler' on .

,

some examinees must all be considered simultaneously to determine what, l ,re...
translition,' if any,, is to be.performed is ...":4;'.

'II'.
-

. _...
.

.
.., r .

If there is uniform prior information about all examinees 6 the i s
_ _ ,

!i

0,
.

score distribution, it may be best to maximize the aggregate efftciency..,,,-. . '-%.

If"no information about true scores. is available, it is'imposeible,to

A assess which individuals have the g .rpatest squared. prediction eirbr0 .'.

.

associated with them. Therefore, a good strategy ,would be to ichiexe-z.:11;
maximal aggregate efficiency. ,, . . ,.-

, , , e .

IhiliFEr information is concentritid.ak the extremes of the score
.-. . . distribution, translations may be app fled to bring the predicted.score

.

more in line with the type of score that itight be expected, based upon
'prior information.; In accomplishing this reduction, however, one must
evaluate its effect on aggregate efficiency. First, the individual
scd;Tes canoe adjusted until they arelin line 3ith prior expectations,
and the. resulting aggregate efficiency. therkevaluated. Cr, one saw. .

. _..... focus on.attaining_maximmeaggregate efficiency and then notice how'

. I the scores of examinees for whom prior information is available are ,--.

influenced by minor translations.- A major declgion is to determine
. at what point score4fitting.for particular examinees becoies counter-
productive or inefficient, bike e Minimal additional improvements are

;achieved ai,a,high cost to erdll-aggregate efficiency.
Ai . 1, .,L,.g.

A cafe in point is when the "true"'Wtore does;not fall between the
.

MLOband l'0), -but when.fl(I) falls between, the true score.and the saillple -.

mean. Shrinking the'difference bitween,the sample mean and .11,(1),by ap-
.

plicatidh of a limited translation estimator, f5(1), actually increases"
the squared prediction error for that examinee. The reasoning is the ,..,

same when all prior information on an examinee does not fall hetween.the . ,

MLE (sample mean) and f1().. .. . ..

. ,..-,

.

-There are also several methodological considerations-in relating :

.obtained and "true score estimates: Inititl.trials'may underestimate
a "true° score if the learning curve has not:Yet reached asymptote ih
this number of test trials. Likewise, fatigue from the last group of

. . test items could produce an' underestimate of the true"-score
10,-.

. .
. ,

b

r s

,
I w

4 0
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;

- s- ,.
,- . I
. o

. $,..1, -, gamy factors need to. be considered in relating served es.and .,,

/ . trUi..icCies,'in'applying,lipited translations, in optimizing good indi -
...." 'vidual and gdod aggregate prediction, and in using prior information on

.
. 1s; .- . .i.

. ,specAic.examinees productively._, The usefulness of Stein's estimator
''.in 'behavioral and educatidnal research largely depends upon how-well' -

-
', ' theae-considerationi are -addresied. . . .

. d V

7.4.

",

4 AIMMAVI'\ ,
P'. or

\ The scientificimplioations and practiol applications of the Stein
e4imgtor4approeqh for estimating true scores from observed scores are .

of potentlally.greate.inportance. The conceptual ;complexity is not much
greeer fhin that required for more conventional regression models. The
mpilleljtAyesian.ASpect allows the examiner to incorporate his/her own"-
degre Ofprior information about. selected examinees. This approach .

allows Or,a more accurate estimation of true scares, with the-corollary,
orusin fe4Ar.test items to achieve those true score estimates. ..gfron

w and Morrit (°1975) make the point that "there is little,penaltyjor using ".
the rules 'boussed here because they cannot'give large total. mean sqUared
error- th- 41WMZE. . ." This assurance may be a sufficient reason for
more:caiefuliexamination of the utility of the Stein estimator and its
.limited translation estimators as they-apply to behaviokal and social
-science.researc. 'IN
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